

CECS 125:2001

中国工程建设标准化协会标准

建筑给水钢塑复合管管道工程技术规程

Technical specification for steel-plastic complex pipeline engineering of building of water supply in building

中国工程建设标准化协会标准

建筑给水钢塑复合管管道工程技术规程

Technical specification for steel-plastic complex pipeline engineering of building of water supply in building

CECS 125:2001

主编部门:上海建筑设计科技发展中心

批准部门:中国工程建设标准化协会

施行日期:2001 年 9 月 1 日

前言

根据中国工程建设标准化协会(98)建标协字第 20 号文《关于下达 1998 年推荐性标准编制计划的函》的要求,制订本规程。

钢塑复合管既有钢管的机械强度,又有塑料管的耐腐蚀性能,已在建筑给水工程中应用。本规程是在总结国内实践经验,参考国外相关资料,并充分征求意见的基础上,进行编制的。

根据国家计委计标(1986)1649 号文《关于请中国工程建设标准化委员会负责组织推荐性工程建设标准试点工作的通知》的要求,现批准协会标准《建筑给水钢塑复合管管道工程技术规程》,编号为 CECS 125:2001,推荐给工程建设设计、施工和使用单位采用,本规程由中国工程建设标准化协会建筑给水排水委员会归口管理,由上海建筑设计科技发展中心(上海市石门二路 258 号 917 室,出编:200041)负责解释。在使用中如发现需要修改和补充之处,请将意见和资料径寄解释单位。

主编单位:上海建筑设计科技发展中心

参编单位:南通三达防腐工程有限公司

中国船舶工业集因公司船舶工艺研究所

广州番禺先河塑钢有限公司

上海宏洁钢塑管制造有限公司

上海德士净水管道制造有限公司

天津市通宝管件公司

上海瑞孚管路系统有限公司

主要起草人:张 淼、应明康、桑鲁青、季祖康、贝祖建、何衍雄、李一垄、 蒋建明、王沏梅、陶松岳

中国工程建设标准化协会 2001 年 7 月 20 日

目 次

育	֓֞֞֓֞֓֞֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	言							٠.	 	 ٠.	 	 ٠.	٠.	 	•	 ٠.	٠.	٠.	 	 3
1	总	贝	IJ							 	 	 	 		 		 			 	 5
2	术	ij	吾							 	 	 	 		 		 			 . 	 5
3	管	材货	も 择							 	 	 	 		 		 			 . 	 6
4	水	力计	算							 	 	 	 		 		 			 . 	 6
	4.1	沿程	阻力	计算	争.					 	 	 	 		 		 6
	4.2	局部	阻力	计算	筸.					 	 	 	 		 		 7
5	防	冻货	混							 	 	 	 		 		 			 . 	 8
	5.1	防	冻							 	 	 	 		 		 8
	5.2	保法	温隔	热						 	 	 	 		 		 8
6	管	道安装	₹							 	 	 	 		 		 			 	 9
	6.1	— f	般 规	定						 	 	 	 		 		 9
	6.2	螺纟	纹 连	接						 	 	 	 		 		 	. . .		 	 10
	6.3	法	兰 连	接						 	 	 	 		 		 	. . .		 	 11
	6.4	沟 柞	漕 连	接						 	 	 	 		 		 	. . .		 	 12
7	检!	验与验	验收.							 	 	 	 		 		 			 . 	13
4	×规程	≝用词 ⁻	说明							 	 	 	 		 		 			 . 	15
B/	1 (⊒. Δ	钢丝	明复合	· 答:	ъk Ј	ЬH	上質	夷													16

1 总 则

- 1.0.1 为使建筑给水钢塑复合管道工程的设计、施工及验收做到技术先进、经济合理、安全卫生、确保质量,制订本规程。
- 1.0.2 本规程适用于工业与民用建筑中输送生活饮用冷热水、饮用净水等的给水系统。
- 1.0.3 给水系统采用的钢塑复合管管材,应符合下列要求:
- 1 涂塑镀锌焊接钢管(焊接钢管)应符合现行行业标准《给水涂塑复合钢管》CJ/T120的要求。涂塑无缝钢管应符合现行行业标准《给水涂塑复合钢管》CJ/T120的有关要求。
- 2 衬塑镀锌焊接钢管(焊接钢管)应符合现行行业标准《给水衬塑复合钢管》的要求。衬塑无缝钢管应符合现行行业标准《给水衬塑复合钢管》的有关要求。
- 1.0.4 给水系统采用的钢塑复合管管件应符合下列要求:
 - 1 衬塑可锻铸铁管件应符合现行行业标准《给水衬塑可锻铸铁管件》的要求。
 - 2 衬塑钢管件应符合现行行业标准《给水衬塑复合钢管》的有关要求。
- 3 涂塑钢管件、涂塑球墨铸铁管件、涂塑铸钢管件应符合现行行业标准《给水涂塑复合钢管》CJ/T120 的有关要求。
- 1.0.5 建筑给水钢塑复合管管道工程的设计、施工及验收,除执行本规程外,尚应符合国家现行有关标准的规定。

2 术 语

2.0.1 钢塑复合管 steel-plastic complex pipe

在钢管内壁衬(涂)一定厚度塑料层复合而成的管子。钢塑复合管含衬塑钢管和涂塑钢管。

- 2.0.2 衬塑钢管 lining plastic steel pipe 采用紧衬复合工艺将塑料管衬于钢管内而制成的复合管。
- 2.0.3 涂塑钢管 coating plastic stee1 pipe 将塑料粉未涂料均匀地涂敷于钢管表面井经加工而制成的复合管。
- 2.0.4 沟槽式连接 ditcb-notch connection
 在管段端部压出凹槽,通过专用卡箍,辅以像胶密封圈,扣紧沟槽而连接的方式。
- 2.0.5 压槽 press notch

3 管材选择

- 3.0.1 当管道系统工作压力不大于 1.0MPa 时,宜采用涂(衬)塑焊接钢管,可锻铸铁衬塑管件,螺纹连接。
- 3.0.2 当管道系统工作压力大于 1.0MPa 且不大于 1.6MPa 时, 宜采用涂(衬) 塑无缝钢管、无缝钢管件或球墨铸铁涂(衬) 塑管件, 法兰连接或沟槽式连接。
- 3.0.3 当管道系统工作压力大于 1.6MPa 且小于 2.5MPa 时,应采用涂(衬)塑的无缝钢管和无缝钢管或铸钢涂(衬)塑管件。采用法兰或沟槽式连接。
- 3.0.4 管径不太子 100mm 时宜采用螺纹连接,管径太于 100mm 时宜采用法兰或沟槽式连接。水泵房管道宜采用法兰连接。
- 3.0.5 水池(箱)内管道选择应符合下列要求:
- 1 水池(箱)内浸水部分的管道应采用内外涂塑焊接钢管及管件(包括法兰、水泵吸水管、溢水管、吸水喇叭、溢水漏斗等)。
 - 2 泄水管、出水管应采用管内外及管口端涂塑管段。
 - 3 管道穿越钢筋混凝土水池(箱)部位应采用耐腐蚀防水套管。
 - 4 管道的支承件、紧固件均应采用经防腐蚀处理的金属支承件。
- 3.0.6 在热水供应管道系统中,应采用内衬交联聚乙烯(PEx)、氯化聚氯乙烯(PVC C)的钢塑复合管和内衬聚丙烯(PP)、氯化聚氯乙烯(PVC C)的管件。当采用橡胶密封时,应采用耐热橡胶密封圈。
- 3.0.7 埋地的钢塑复合管管道,宜在管道外壁采取可靠的防腐措施。

4 水力计算

4.1 沿程阻力计算

4.1.1 管道沿程水头损失应按下式计算:

$$h_f = \lambda \bullet \frac{L}{d_i} \bullet \frac{V^2}{2g} \tag{4.1.1}$$

式中 λ ——水力摩阻系数;

L——管段长度(m);

 d_i ——管道计算内径(m);

v — 平均流速 (m/s);

g ——重力加速度 (m/s^2) 。

4.1.2 钢塑复合管的水力摩阻系数 λ 可按下式计算:

$$\lambda = \frac{0.25}{R_a^{0.226}} \tag{4.1.2}$$

式中 R_{e} ——雷诺数。

4.1.3 雷诺数 *R*₂ 应按下式计算: (4.1.3)

$$R_e = \frac{\upsilon \bullet d_c}{\upsilon} \tag{4.1.3}$$

式中 v——水流速度(m/s);

v——水的运动粘度(m²/s),水温100时,取1.31×10⁻⁶ m²/s。

4.1.4 当水温 10 时,钢塑复合管的单位长度水头损失可按下式计算:

$$i = 8.973 \times 10^{-3} \frac{Q^{1.774}}{d_i^{4.774}}$$
 (4.1.4)

式中 i ——单位长度水头损失(kPa/m);

Q——流量(m³/s);

 d_j ——管道计算内径(m),内涂塑钢管为钢管内径减 1mm,内衬塑钢管为钢管内径减 $(2 \times i)$ 符题层厚度)。

注:镀锌焊接钢管(焊接钢管)、涂(衬)塑复合管的单位长度水头损失可按附录 A 采用。

4.1.5 当水温高于 10 时,钢塑复合管的单位长度水头损失应按表 4.1.5 乘以温度修正系数。

表 4.1.5 水头损失温度修正系数

水温()	10	20	30	40	50	60	70	80	90	95
修正系数	1.0	0.94	0.90	0.86	0.82	0.79	0.77	0.75	0.73	0.72

4.2 局部阻力计算

- **4.2.1** 对螺纹连接内衬塑可锻铸铁管件的给水系统,配水管段的局部阻力可按沿程阻力乘以百分数确定。百分数可按下列规定采用:
 - 1 生活给水管网 30%~40%;

4.2.2 对法兰或沟槽式连接内涂(衬)塑钢管件的给水系统,局部阻力可按沿程阻力的 10%~20%计算。

5 防冻保温

5.1 防 冻

- 5.1.1 室外埋地钢塑复合管应埋设在冰冻线之下。
- 5.1.2 在室外明露或室内有可能冰冻的情况下,钢塑复合管应采取防冻措施。

5.2 保温隔热

- 5.2.1 室内明敷热水管道应保温隔热。在有可能结露的场所宜采取防结露措施。
- 5.2.2 室内嵌墙管道的保温材料厚度,应根据管道长度、水温、环境温度和供水时间经计算确定。
- 5.2.3 衬塑复合管的导热系数可按下式确定:

$$\lambda = \frac{\lambda_1 \delta_1 + \lambda_2 \delta_2}{\delta_1 + \delta_2} \tag{5.2.3}$$

式中 λ ——钢塑复合管的导热系数($W/m \cdot K$);

 λ_1 ——钢管的导热系数,一般可取 50W/m·K;

 λ_0 ——衬塑层塑料的导热系数,可按表 5.2.3-1 确定;

 δ_1 ——钢管计算壁厚(mm),镀锌或非镀锌焊接钢管的计算外径、壁厚见表 5.2.3-2,

 δ_0 ——衬塑层计算壁厚(mm);管径 15~65mm 时,壁厚为 1.5mm;管径 80~125mm,

壁厚为 2.0mm; 管径 150mm 时, 壁厚为 2.5mm。

注:涂塑钢管的涂层可忽略不汁。

表 5.2.3-1 衬塑层塑料导热系数

衬塑材料	PVC-C、PVC-U	PP	PE	PEX
导热系数 W/m·K	0.16	0.24	0.48	0.41

表 5.2.3-2 镀锌或非镀锌焊接钢管计算外径、壁厚(mm)

公称直径 DN	15	20	25	32	40	50	65	80	100	125	150
外径	21.3	26.8	33.5	42.3	48.0	60.0	75.5	88.5	114.0	140.0	165.0
壁厚 $\delta_{ m l}$	2.75	2.75	3.25								

6 管道安装

6.1 一般规定

- 6.1.1 管道安装前应具备下列条件:
 - 1 施工图纸及其他技术文件齐全,并已进行技术交底;
- 2 对安装所需管材、配件和阀门等附件以及管道支承件、紧固件、密封圈等核对产品合格征、质量保证书、规格型号、品种和数量,并进行外观检查;
 - 3 施工场地及施工用水、供电满足要求;
 - 4 施工机具已到场;
 - 5 与管道连接的设备已就位固定或已定位。
- 6.1.2 施工人员应经技术培训,熟悉钢塑复合管的性能,掌握基本操作技能。
- 6.1.3 钢塑复合管应选用下列施工机具:
 - 1 切割应采用金属锯;
 - 2 套丝应采用自动套丝机;
 - 3 压槽应采用专用滚槽机;
 - 4 弯管应采用弯管机冷弯。
- 6.1.4 钢塑复合管施工程序应符合下列要求:
 - 1 室内埋地管应在底层土建地坪施工前安装。
 - 2 室内埋地管道安装至外墙外不直小于 500mm, 管口应及时封堵;
 - 3 钢塑复合管不得埋没于钢筋混凝土结构层中;
 - 4 管道安装宜从大口径逐渐接驳到小口径。
- **6.1.5** 管道穿越楼板、屋面、水箱(池)壁(底),应预留孔洞或预埋套管,并应符合下列要求:
 - 1 预因洞孔尺寸应为管道外径加 40mm;
- 2 管道在墙板内暗敷需开管槽时,管槽宽度应为管道外径加 30mm;且管槽的坡度应为管坡;
- 3 钢筋混凝土水箱(池),在进水管、出水管、泄水管、溢水管等穿越处应预埋防水套管,并应用防水胶泥嵌填密实。

6.1.7 埋地、嵌墙敷设的管道,在进行隐蔽工程验收后应及时填补。

6.2 螺纹连接

- 6.2.1 截管应符合下列要求:
- 1 截管宜采用锯床,不得采用砂轮切割。当采用盘锯切割时,其转速不得太于800r/min;
 - 2 当采用手工锯截管时,其锯面应垂直于管轴心。
- 6.2.2 套丝应符合下列要求:
 - 1 套丝应采用自动套丝机;
 - 2 套丝机应采用润滑油润滑;
- 3 圆锥形管螺纹应符合现行国家标准《用螺纹密封的管螺纹》GB/T7306 的要求,并 应采用标准螺纹规检验。
- 6.2.3 管端清理加工应符合下列要求:
 - 1 应用细性将金属管端的毛边修光;
 - 2 应采用棉回丝和毛刷清除管端和螺纹内的油、水和金属切屑;
 - 3 衬塑管应采用专用绞刀,将衬塑层厚度 1/2 倒角,倒角坡度宜为 10°~15°;
 - 4 涂塑管应采用削刀削成轻内倒角。
- **6.2.4** 管端、管螺纹清理加工后,应进行防腐、密封处理,宜采用防锈密封胶和聚四氟乙烯生料带缠绕螺纹,同时应用色笔在管壁上标记拧入深度。
- 6.2.5 不得采用非衬塑可锻铸铁管件。
- 6.2.6 管子与配件连接前,应检查衬塑可锻铸铁管件内橡胶密封圈或厌氧密封胶。然后将配件用手捻上管端丝扣,在确认管件接口已插入衬(涂)塑钢管后,用管子钳按表 6.2.6 进行管子与配件的连接。

注:不得逆向旋转。

表 6.2.6 标准旋入牙数及标准紧固扭矩

公称直径	旋	λ	扭矩	管子钳规格
(mm)	长度	牙数	N · m	(mm)施加的力(KN)
15	11	6.0~6.5	40	350 × 0.15
20	13	6.5~7.0	60	350 × 0.25
25	15			

32	17	7.0~7.5	120	450 × 0.35
40	18	7.0~7.5	150	600 × 0.30
50	20	9.0~9.5	200	600 × 0.40
65	23	10.0~10.5	250	900 × 0.35
80	27	11.5~12.0	300	900 × 0.40
100	33	13.5~14.0	400	1000 × 0.50
125	35	15.0~16.0	500	1000 × 0.60
150	35	15.0~16.0	600	1000 × 0.70

- 6.2.7 管子与配件连接后,外露的螺纹部分及所有钳痕和表面损伤的部位应涂防锈密封胶。
- 6.2.8 用厌氧密封胶密封的管接头,养护期不得少于24h,其间不得进行试压。
- 6.2.9 钢塑复合管不得与阀门直接连接,应采用黄铜质内衬塑的内外螺纹专用过渡管接头。
- 6.2.10 钢塑复合管不得与给水栓直接连接,应采用黄钢质专用内螺纹管接头。
- 6.2.11 钢塑复合管与钢管、塑料管连接时应采用专用过渡接头。
- **6.2.12** 当采用内衬塑的内外螺纹专用过渡接头与其它材质的管配件、附件连接时,应在外螺纹的端部采取防腐处理。

6.3 法兰连接

- 6.3.1 用于钢塑复合管的法兰应符合下列要求:
- 1 凸面板式平焊钢制管法兰应符合现行国家标准《凸面板式平焊钢制管法兰》 GB/T9119.5~9119.10 的要求:
- 2 凸面带颈螺纹钢们管法兰应符合现行国家标准《凸面带颈螺纹钢制管法》 GB/T9114.1~9114.3 的要求,仅适用于公称管径不大于 150mm 的钢塑复合管的连接;
 - 3 法兰的压力等级应与管道的工作压力相匹配。
- 6.3.2 钢塑复合管法兰现场连接应符合下列要求:
 - 1 钢塑复合管的截管应符合本规程 6.2.1 的要求;
 - 2 在现场配接法兰时,应采用内衬塑凸面带颈螺纹钢制管法二;

- 6.3.3 钢塑复合管法兰连接可根据施工人员技术熟练程度采取一次安装法或二次安装 法:
- 1 一次安装法:可现场测量、绘制管道单线加工图,送专业工厂进行管段、配件涂(衬)加工后,再运抵现场安装;
- 2 二次安装法:可在现场用非涂(衬)钢管和管件,法兰焊接,拼装管道,然后拆下运抵专业加工厂进行涂(衬)加工,再运抵现场进行安装。
- **6.3.4** 钢塑复合管法兰连接当采用二次安装法时,现场安装的管段、管件、阀件和法兰盘均应打上钢印编号。

6.4 沟槽连接

- 6.4.1 沟槽连接方式可适用于公称直径不小于 65mm 的涂(衬)塑钢管的连接。
- 6.4.2 沟槽式管接头应符合国家现行的有关产品标准。
- 6.4.3 沟槽式管接头的工作压力应与管道工作压力相匹配。
- 6.4.4 用于输送热水的沟槽式管接头应采用耐温型橡胶密封圈。

用于饮用净水管道的橡胶材质应符合现行国家标准《生活饮用水输配水设备及防护材料的安全性评价标准》GB/T17219 的要求;

- 6.4.5 对衬塑复合钢管,当采用现场加工沟槽并进行管道安装时,其施工应符合下列要求:
 - 1 应优先采用成品沟槽式涂塑管件;
- 2 连接管段的长度应是管段两端口间净长度减去 6~8mm 断料,每个连接口之间应有 3~4mm 间隙并用钢印编号;
- 3 应采用机械截管,截面应垂直轴心,允许偏差为:管径不太于 100mm 时,偏差不大于 1mm;管径大于 125mm 时,偏差不大于 1.5mm;
 - 4 管外壁端面应用机械加工 1/2 壁厚的圆角;
- 5 应用专用滚槽机压槽,压槽时管段应保持水平,钢管与滚槽机止面呈 90°。压槽时应持续渐进,槽深应符合表 6.4.5 的要求;并应用标准量规测量槽的全周深度。如沟槽过浅,应调整压槽机后再行加工。

表 6.4.5 沟槽标准深度及公差(mm)

管 径	沟糟深	公 差
80		

100 ~ 150	2.20	+0.3
200 ~ 250	2.50	+0.3
300	3.0	+0.5

注:沟槽过深,则应作废品处理。

- 6 与橡胶密封回接触的管外端应平整光滑,不得有划伤橡胶圈或影响密封的毛刺。
- 6.4.6 涂塑复合钢管的沟槽连接方式,宜用于现场测量、工厂预涂塑加工、现场安装。
- **6.4.7** 管段在涂塑前应压制标准沟槽,涂塑加工应符合《给水涂塑复合钢管》CJ/T120的有关要求。
- 6.4.8 管段涂塑除涂内壁外,还应涂管口端和管端外壁与橡胶密封圈接触部位。
- 6.4.9 衬(涂)塑复合钢管的沟槽连接应按下列程序进行:
- 1 检查橡胶密封圈是否匹配,涂润滑剂,并将其套在一根管段的未端;将对接的另一根管段套上,将胶圈移至连接段中央。
 - 2 将卡箍套在胶圈外,并将边缘卡入沟槽中。
 - 3 将带变形块的螺栓插入螺栓孔,并将螺母旋紧。
 - 注:应对称交着旋紧,防止胶圈起皱。
- 6.4.10 管道最大支承间距应符合表 6.4.10 的要求。

表 6.4.10 管道最大支承间距

管径 (mm)	最大支承间距(m)
65 ~ 100	3.5
125 ~ 200	4.2
250 ~ 315	5.0

- 注:1.横管的任何两个接头之间应有支承;
 - 2.不得支承在按头上。
- 6.4.11 沟槽式连接管道,无须考虑管道因热胀冷缩的补偿。
- 6.4.12 埋地管用沟槽式卡箍接头时,其防腐措施应与管道部分相同。

7 检验与验收

7.0.1 钢塑复合管给水管道系统的试验压力,应采用与普通钢管给水系统相同的试验压力。

- 一系统试压时,应按塑料管的有关标准执行。
- 7.0.3 管道试压合格后,应将管道系统内的存水放空,并进行管道清洗。输送生活饮用水的管道还应消毒。消毒后的管道通水水质应符合现行国家标准《生活饮用水卫生标准》 GB5749 的要求。
- 7.0.4 建筑给水钢塑复合管道工程应按国家有关规定进行分项、分部及单位工程验收。中间验收、竣工验收前施工单位应进行自检。验收时应做好记录,签署文件,并立卷归档。
- 7.0.5 验收时应具备下列文件:
 - 1 施工图、峻工图及设计变更文件;
 - 2 材料出厂合格证和质量保证书;
 - 3 中间试验记录和隐蔽工程验收记录;
 - 4 水压试验记录和冲洗通水试验记录;
 - 5 工程质量事故记录;
 - 6 分项、分部、单位工程质量检验记录。
- 7.0.6 工程验收时应重点检查下列项目:
 - 1 管材、管件标志是否与用途一致,冷水管所用管材管件不得用于热水管;
 - 2 管道与阀门、给水栓连接是否采用专用过渡配件;
 - 3 沟糟式连接是否采用专用橡胶密封圈;
 - 4 螺纹连接部位的管段露牙数是否过多;
- 5 水箱(池)内浸水部分管道外壁是否涂塑,支承件是否牢固和防腐,穿越池壁(底)处的防水性及牢固性;
 - 6 检查管位、管径、标高、坡度、垂直度、支承位置及牢固性;
 - 7 埋地管道的防腐处理。

本规程用词说明

- 一、为便于在执行本规程条文时区另。对待,对于要求严格程度不同的用词说明如下:
 - 1 表示很严格,非这样做不可的:

正面词采用"必须",反面词采用"严禁"。

2 表示严格,在正常情况下均应这样做的:

正面词采用"应",反面词采用"不应"或"不得"。

3 表示允许稍有选择,在条件许可时首先应这样做的:

正面词采用"宜",反面词采用"不宜"。

表示有选择,在一定条件下可以这样做的,采用"可"。

二、条文中指明应按其他有关标准执行时,写法为"应按……执行"或"应符合……的规定(要求)"。

附录 A 钢塑复合管水力计算表

A. 0.1 衬塑钢管的沿程水头损失可按表 A. 0.1 确定。

表 A. 0.1 建筑给水用衬题钢管水力计算表

流量		DN	115	DN	20	DN	125	DN32					
OR. M		$d_i = 0$	0128	$d_i = 0$	0183	$d_{i} = 0.0240$		$d_{j} = 0.0328$					
(m³/h)	(l/s)	υ	i	υ	i	υ	i	υ	i				
0. 234	0.065	0.51	0.345										
0. 252	0.070	0.54	0. 393										
0. 270	0.075	0.58	0.444										
0. 288	0.080	0.62	0. 498										
0. 306	0.085	0.66	0.554										
0. 324	0.090	0.70	0.614										
0. 342	0.095	0.74	0.675										
0.360	0.100	0.78	0.740										
0. 396	0.11	0.85	0. 876										
0. 432	0. 12	0. 93	1. 022										
0.468	0. 13	1.01	1. 178	0.49	0. 214								
0.504	0.14	1.09	1.344	0.53	0. 224								
0.540	0. 15	1. 17	1.519	0. 57	0. 276								
0. 576	0.16	1. 24	1.703	0.61	0. 309								
0.612	0.17	1. 32	1. 896	0.65	0. 344								
0.648	0.18	1.40	2. 099	0.68	0. 381								
0. 684	0. 19	1.48	2. 310	0.72	0.419								

续表 A.O.1

		DN	115	DN	120	DN	125	DN32		
流量	Ų	$d_i = 0$	0128	$d_i = 0$. 0183	$d_j = 0$	0240	$d_i = 0.0328$		
(m³/h)	(1/8)	ש	i	ש	i	v	i	v	i	
0. 72	0. 20	1. 55	2. 530	0.76	0. 459					
0. 90	0. 25	1. 94	3. 759	0. 95	0. 682	0.55	0. 187			
1.08	0. 30	2. 33	5. 194	1. 14	0. 943	0. 66	0. 258			
1. 26	0. 35	2. 72	6. 828	1. 33	1. 239	0.77	0.340			
1.44	0. 40	3. 11	8. 653	1. 52	1. 570	0.88	0. 430			
1. 62	0. 45			1. 71	1. 935	0.99	0. 530	0.53	0.119	
1.80	0. 50			1. 90	2. 333	1.11	0. 639	0. 59	0. 144	
1.98	0. 55			2. 09	2. 763	1. 22	0. 757	0. 65	0. 170	
2. 16	0. 60			2. 28	3. 224	1. 33	0. 884	0. 71	0. 199	
2. 34	0. 65			2. 47	3. 716	1.44	1.018	0. 77	0. 229	
2. 52	0.70			2. 66	4. 238	1.55	1. 161	0. 83	0. 261	
2. 70	0.75			2. 85	4. 790	1. 66	1.313	0. 89	0. 295	
2. 88	0. 80			3.04	5. 371	1.77	1.472	0. 95	0. 331	
3.06	0. 85					1.88	1.639	1.01	0. 369	
3. 24	0. 90					1. 99	1.814	1.07	0. 408	
3. 42	0. 95					2. 10	1. 996	1. 12	0. 449	
3. 60	1.00					2. 21	2. 187	1. 18	0. 492	
3. 78	1. 05					2. 32	2. 384	1. 24	0. 537	
3. 96	1. 10					2. 43	2. 589	1.30	0. 583	
4. 14	1. 15					2.54	2. 802	1. 36	0. 631	

续表 A.O.1

atr 4	t Q	DN	115	DN	120	DN	125	DN	132
		$d_i = 0.0128$		$d_i = 0$. 0183	$d_i = 0$. 0240	$d_i = 0.0328$	
(m³/h)	(m³/h) (l/s)		i	υ	i	ซ	i	υ	,
4. 32	1. 20					2. 65	3. 022	1.42	0. 680
4.50	1. 25					2. 76	3. 249	1.48	0. 731
4. 68	1. 30					2. 87	3. 483	1. 54	0. 784
4.86	1. 35					2. 98	3. 724	1.60	0. 838
5.04	1.40					3.09	30972	1.66	0. 894
5. 22	1. 45							1.72	0. 951
5.40	1. 50							1.78	1.010
5. 58	1. 55							1.83	1. 071
5. 76	1. 60							1.89	1. 133
5. 94	1. 65							1. 95	1. 197
6. 12	1. 70							2.01	1. 262

adr JE	流量Q		DN32		DN40		150	DN	165
OL M	ı Q	$d_i = 0$. 0328	$d_i = 0$. 0380	$d_{\rm j} = 0.0500$		$d_i = 0$. 0650
(m³/h)	(l/s)	υ	i	υ	i	υ	i	υ	i
2. 16	0.60	0.71	0. 199	0. 53	0. 099				
2. 34	0. 65	0.77	0. 229	0. 57	0. 114				
2. 52	0. 70	0.83	0. 261	0. 62	0. 129				
2. 70	0. 75	0.89	0. 295	0.66	0. 146				
2. 88	0.80	0. 95	0. 331	0.71	0. 164				

续表 A.O.1

		DN	132	DN	140	DN	150	DN	65
24.1	ł Q	$d_{i} = 0$	0328	$d_i = 0$. 0380	$d_i = 0$. 0500	$d_i = 0$	0650
(m³/h)	(l/s)	υ	i	υ	i	υ	i	υ	i
3.06	0. 85	1.01	0. 369	0. 75	0. 183				
3. 24	0. 90	1.07	0.408	0.79	0. 202				
3. 42	0. 95	1. 12	0. 449	0. 84	0. 223				
3. 60	1.00	1. 18	0. 492	0. 88	0. 244	0.51	0.066		
3. 78	1.05	1. 24	0. 537	0.93	0. 266	0.53	0.072		
3. 96	1. 10	1. 30	0. 583	0. 97	0. 289	0.56	0. 078		
4. 14	1. 15	1. 36	0. 631	1.01	0. 312	0.59	0.084		
4. 32	1. 20	1. 42	0.680	1.06	0. 337	0.61	0. 091		
4. 50	1. 25	1.48	0. 731	1. 10	0. 362	0.64	0. 098		
4. 68	1.30	1.54	0.784	1. 15	0. 388	0.66	0. 105		
4. 86	1. 35	1.60	0. 838	1. 19	0. 415	0.69	0. 112		
5.04	1.40	1.66	0. 894	1. 23	0. 443	0.71	0. 119		
5. 22	1. 45	1.72	0. 951	1. 28	0. 471	0.74	0. 127		
5.40	1.50	1.78	1. 010	1. 32	0. 501	0.76	0. 135		
5. 58	1. 55	1.83	1.071	1. 37	0. 530	0.79	0.143		
5. 76	1.60	1. 89	1. 133	1.41	0. 561	0.81	0.151		
5. 94	1. 65	1. 95	1. 197	1.45	0. 593	0.84	0.160	0.50	0.046
6. 12	1.70	2.01	1. 262	1.50	0. 625	0.87	0. 169	0.51	0.048
6. 30	1.75	2. 07	1. 328	1.54	0. 658	0.89	0. 177	0. 53	0. 051·
6. 48	1.80	2. 13	1. 396	1.59	0. 692	0.92	0. 187	0.54	0. 053

续表 A.O.1

液量	• 0	DN	132	DN	ł40	DN	150	DN	65
<i>3</i> 4. E		$d_i = 0$. 0328	$d_i = 0$. 0380	$d_i = 0$	0500	$d_i = 0$	0650
(m³/h)	(l/s)	υ	i	υ	i	υ	,	υ	i
6.66	1.85	2. 19	1. 466	1. 63	0. 726	0.94	0. 196	0.56	0.056
6.84	1. 90	2. 25	1. 537	1.68	0.761	0.97	0. 205	0.57	0. 059
7. 02	1. 95	2. 31	1.609	1. 72	0. 797	0.99	0. 215	0.59	0. 061
7. 20	2. 00	2. 37	1. 683	1.76	0. 834	1.02	0. 225	0.60	0.064
7. 56	2. 10	2. 49	1. 835	1.85	0. 909	1.07	0. 245	0.63	0. 070
7. 92	2. 20	2. 60	1. 993	1. 94	0. 987	1.12	0. 266	0.66	0.076
8. 28	2. 30	2. 72	2. 157	2.03	1.068	1. 17	0. 288	0. 69	0.082
8. 64	2. 40	2.84	2. 326	2. 12	1. 152	1. 22	0. 311	0.72	0.089
9.00	2. 50	2. 96	2. 501	2. 20	1. 239	1.27	0. 334	0.75	0.096
9. 36	2. 60	3.08	2. 681	2. 29	1. 328	1.32	0. 3 58	0.78	0.102
9. 72	2. 70			2. 38	1. 420	1.38	0. 383	0.81	0. 109
10.08	2. 80			2. 47	1. 515	1.43	0.409	0.84	0. 117
10.44	2. 90			2. 56	1. 612	1.48	0. 435	0.87	0. 124
10.80	3.00			2. 65	1. 712	1.53	0.462	0.90	0. 132
11. 16	3. 10			2. 73	1. 814	1.58	0. 489	0. 93	0. 140
11.52	3. 20			2. 82	1. 919	1.63	0.518	0.96	0.148
11.88	3. 30			2. 91	2. 027	1.68	0. 547	0.99	0.156
12. 24	3. 40			3. 00	2. 137	1.73	0.577	1.02	0. 165
12.60	3.50					1. 78	0. 607	1.05	0. 173
12.96	3. 60					1. 83	0.638	1.08	0. 182

续表 A.O.1

34: 4	• 0	DN	132	DN	DN40		DN50		165
M. H	t Q	$d_i = 0.0328$		$d_i = 0.0380$ $d_i =$		$d_i = 0$. 0500	$d_i = 0$. 0650
(m³/h)	(l/s)	υ	i	υ	i	υ	i	υ	i
13. 32	3. 70					1.88	0.670	1. 12	0. 191
13. 68	3. 80					1.94	0. 702	1. 15	0. 201
14. 04	3. 90					1.99	0.735	1.18	0. 210
14. 40	4. 00					2.04	0.769	1. 21	0. 220
14. 76	4. 10					2.09	0.804	1. 24	0. 230

atr 1	• •	DN	150	DN	165	DN	180	DN	100
OK I	ł Q	$d_i = 0$. 0500	$d_j = 0$. 0650	$d_i = 0$. 0765	$d_i = 0$. 1020
(m³/h)	(l/s)	υ	i	υ	i	υ	i	υ	i
14. 76	4. 10	2. 09	0.804	1. 24	0. 230	0.89	0.106	0.50	0. 027
15. 12	4. 20	2. 14	0. 839	1. 27	0. 240	0. 91	0.110	0.51	0. 028
15. 48	4. 30	2. 19	0. 875	1. 30	0. 250	0.94	0. 115	0.53	0. 029
15. 84	4. 40	2. 24	0. 911	1. 33	0. 260	0.96	0. 120	0.54	0. 030
16. 20	4.50	2. 29	0. 948	1. 36	0. 271	0. 98	0. 124	0.55	0. 032
16. 56	4. 60	2. 34	0. 986	1. 39	0. 282	1.00	0. 129	0.56	0. 033
16. 92	4. 70	2. 39	1.024	1. 42	0. 293	1.02	0.134	0.58	0.034
17. 28	4. 80	2. 44	1.063	1.45	0. 304	1.04	0.140	0. 59	0. 035
17. 64	4. 90	2.50	1.103	1. 48	0. 315	1.07	0. 145	0. 60	0. 037
18.00	5.00	2.55	1.143	1.51	0. 327	1.09	0. 150	0. 61	0. 038
18. 36	5. 10	2.60	1. 184	1.54	0. 338	1.11	0. 155	0.62	0.039

據表 A.0.1

		DN	150	DN	165	DN	180	DN	100
流道	· ·	$d_j = 0$. 0500	$d_j = 0$	0650	$d_i = 0$	0765	$d_j = 0$	1020
(m³/h)	(l/s)	υ	i	υ	i	υ	i	υ	i
18. 72	5. 20	2. 65	1. 225	1. 57	0. 350	1. 13	0. 161	0.64	1.041
19. 08	5. 30	2. 70	1. 267	1.60	0. 362	1. 15	0.166	0.65	0.042
19. 44	5. 40	2. 75	1. 310	1.63	0. 374	1. 17	0. 172	0. 66	0.044
19.80	5. 50	2. 80	1. 353	1.66	0. 387	1.20	0. 178	0.67	0.045
20. 16	5. 60	2. 85	1. 397	1. 69	0. 399	1. 22	0. 183	0. 69	0.046
20. 52	5. 70	2. 90	1.442	1.72	0.412	1.24	0. 189	0.70	0.048
20. 88	5. 80	2. 95	1. 487	1. 75	0. 425	1. 26	0. 195	0.71	0.049
21. 24	5. 90	3.00	1.533	1. 78	0. 438	1.28	0. 201	0.72	0.051
21.60	6. 00			1.81	0. 451	1. 31	0. 207	0.73	0. 053
21. 96	6. 10			1.84	0.465	1.33	0. 214	0.75	0.054
22. 32	6. 20			1. 87	0. 478	1.35	0. 220	0.76	0. 056
22. 68	6. 30			1. 90	0. 492	1. 37	0. 226	0. 77	0. 057
23. 04	6.40			1. 93	0. 506	1. 39	0. 233	0. 78	0. 059
23. 40	6.50			1. 96	0. 520	1.41	0. 239	0.80	0.061
23. 76	6. 60			1. 99	0. 534	1.44	0. 246	0.81	0.062
24. 12	6. 70			2. 02	0. 549	1.46	0. 252	0. 82	0.064
24. 48	6. 80			2. 05	0.564	1.48	0. 259	0.83	0.066
24. 84	6. 90			2. 08	0. 578	1.50	0. 266	0.84	0.067
25. 20	7. 00			2. 11	0. 593	1.52	0. 273	0.86	0.069
25. 56	7. 10			2. 14	0. 608	1.54	0. 280	0. 87	0. 071

续表 A.O.1

	• •	DN	150	DN	165	DN	180	DN	100
DK B	t Q	$d_i = 0$. 0500	$d_i = 0$. 0650	$d_i = 0$. 0765	$d_i = 0$. 1020
(m³/h)	(l/s)	υ	i	υ	i	υ	i	υ	i
25. 92	7. 20			2. 17	0. 624	1.57	0. 287	0.88	0.073
26. 28	7. 30			2. 20	0. 639	1.59	0. 294	0.89	0. 074
26. 64	7. 40			2. 23	0.655	1.61	0.301	0. 91	0.076
27. 00	7. 50			2. 26	0. 671	1. 63	0.308	0. 92	0. 078
27.36	7.60			2. 29	0. 686	1.65	0.315	0.93	0.080
27. 72	7. 70			2. 32	0. 703	1. 68	0. 323	0. 94	0. 082
28. 08	7. 80			2. 35	0. 719	1.70	0. 330	0. 95	0. 084
28. 44	7. 90			2. 38	0. 735	1.72	0. 338	0. 97	0. 086
28. 80	8. 00			2. 41	0. 752	1.74	0. 345	0. 98	0. 087
29. 16	8. 10			2. 44	0. 769	1.76	0. 353	0. 99	0. 089
29. 52	8. 20			2. 47	0. 786	1.78	0. 361	1.00	0. 091
29. 88	8. 30			2. 50	0. 803	1.81	0. 369	1.02	0. 093
30. 24	8. 40			2. 53	0. 820	1.83	0. 377	1.03	0. 095
30.60	8. 50			2. 56	0. 837	1.85	0. 385	1.04	0. 097
30.96	8. 60			2. 59	0. 855	1.87	0. 393	1.05	0. 099
31. 32	8. 70			2. 62	0. 873	1.89	0. 401	1.06	0. 102
31.68	8.80			2. 65	0. 890	1.91	0.409	1.08	0. 104
32.04	8. 90			2. 68	0. 908	1.94	0.417	1.09	0. 106
32.40	9. 00			2. 71	0. 927	1.96	0. 426	1.10	0. 108

续表 A.O.1

液量		DN	65	DN	180	DN	100	DN	125
(M. M		$d_i = 0$	0650	$d_j = 0$	0765	$d_i = 0$	1020	$d_i = 0$	1280
(m³/h)	(1/8)	υ	i	ซ	i	υ	i	υ	i
23. 04	6. 40	1. 93	0.506	1. 39	0. 233	0.78	0.059	0.50	0. 020
23. 40	6. 50	1.96	0. 520	1.41	0. 239	0.80	0.061	0.51	0. 020
23. 76	6. 60	1. 99	0.534	1.44	0. 246	0.81	0.062	0. 51	0.021
24. 12	6. 70	2. 02	0.549	1.46	0. 252	0.82	0.064	0. 52	0. 022
24. 48	6. 80	2. 05	0.564	1.48	0. 259	0. 83	0.066	0. 53	0. 022
24. 84	6. 90	2. 08	0.578	1. 50	0. 266	0.84	0.067	0.54	0. 023
25. 2 0	7. 00	2. 11	0. 593	1. 52	0. 273	0.86	0.069	0. 54	0. 023
25. 56	7. 10	2. 14	0.608	1.54	0. 280	0. 87	0.071	0. 55	0.024
25. 92	7. 2 0	2. 17	0. 624	1. 57	0. 287	0. 88	0.073	0. 56	0. 0 2 5
26. 28	7. 3 0	2. 20	0. 639	1. 59	0. 294	0.89	0.074	0. 57	0. 025
26. 64	7. 40	2. 23	0. 655	1. 61	0. 301	0. 91	0.076	0. 58	0. 026
27.00	7. 50	2. 26	0. 671	1. 63	0. 308	0. 92	0. 087	0. 58	0. 026
27. 36	7. 60	2. 29	0. 686	1. 65	0. 315	0.93	0.080	0. 59	0. 027
27. 72	7. 70	2. 32	0. 703	1. 68	0. 323	0.94	0. 082	0.60	0. 028
28. 08	7. 80	2. 35	0.719	1.70	0. 330	0. 95	0.084	0. 61	0. 028
28. 44	7. 90	2. 38	0. 735	1. 72	0. 338	0. 97	0. 086	0. 61	0. 029
28. 80	8. 00	2. 41	0. 752	1. 74	0. 345	0. 98	0. 087	0. 62	0. 030
29. 16	8. 10	2. 44	0.769	1. 76	0. 353	0.99	0.089	0. 63	0. 030
29. 52	8. 20	2. 47	0. 786	1. 78	0. 361	1.00	0. 091	0. 64	0. 031
29. 88	8. 3 0	2. 50	0. 803	1. 81	0. 369	1. 02	0. 093	0. 65	0. 032

续表 A.O.1

*		DN	165	DN	180	DN	100	DN	125
流量	Ų	$d_i = 0$	0650	$d_i = 0$	0765	$d_i = 0$	1020	$d_i = 0$	1280
(m³/h)	(l/s)	υ	i	υ	i	υ	i	υ	i
30. 24	8. 40	2. 53	0. 820	1.83	0. 377	1.03	0. 095	0. 65	0. 032
30. 60	8. 50	2. 56	0. 837	1.85	0. 385	1.04	0.097	0.66	0. 033
30. 96	8. 60	2. 59	0. 855	1. 87	0. 393	1.05	0.099	0. 67	0.034
31. 32	8. 70	2. 62	0.873	1.89	0. 401	1.06	0.102	0.68	0.034
31. 68	8. 80	2. 65	0. 890	1. 91	0.409	1.08	0.104	0.68	0. 035
32. 04	8. 90	2. 68	0. 908	1. 94	0. 417	1.09	0. 106	0. 69	0. 036
32. 40	9. 00	2. 71	0. 927	1.96	0. 426	1.10	0. 108	0. 70	0. 036
32. 76	9. 10	2. 74	0. 945	1. 98	0. 434	1.11	0. 110	0. 71	0.037
33. 12	9. 20	2. 77	0. 963	2. 00	0. 443	1.13	0. 112	0.71	0. 0 3 8
33. 48	9. 30	2. 80	0. 982	2. 02	0. 451	1.14	0. 114	0. 72	0. 039
33. 84	9. 40	2. 83	1.001	2. 05	0.460	1. 15	0.116	0.73	0. 039
34.20	9. 50	2. 86	1. 020	2. 07	0. 469	1.16	0. 119	0.74	0.040
34. 56	9. 60	2. 89	1. 039	2. 09	0. 477	1.17	0. 121	0. 75	0.041
34.92	9. 70	2. 92	1. 058	2. 11	0. 486	1.19	0. 123	0.75	0.042
35. 28	9. 80	2. 95	1.078	2. 13	0. 495	1.20	0. 125	0.76	0.042
35. 64	9. 90	2. 98	1.097	2. 15	0. 504	1. 21	0. 128	0.77	0.043
36.00	10.00	3. 01	1. 117	2. 18	0. 513	1. 22	0. 130	0.78	0.044
36. 90	10. 25			2. 23	0. 536	1. 25	0. 136	0.80	0.046
37. 80	10.50			2. 28	0. 560	1. 28	0. 142	0.82	0.048
38. 70	10. 75			2. 34	0. 583	1. 32	0. 148	0.84	0. 050

旗表 A.O.1

流量	• 0	DN	165	DN	180	DN	100	DN	125
	. ~	$d_{j}=0$	0650	$d_{i}=0$	0765	$d_{i}=0$	1020	$d_j = 0$. 1280
(m³/h)	(l/s)	บ	i	υ	i	υ	i	υ	i
39. 60	11.00			2. 39	0. 608	1. 35	0. 154	0. 85	0. 052
40.50	11. 25			2. 45	0. 632	1. 38	0.160	0. 87	0.054
41.40	11.50			2. 50	0. 658	1.41	0. 167	0.89	0. 056
42. 30	11.75			2. 56	0. 683	1.44	0. 173	0. 91	0. 059
43. 20	12.00			2. 61	0. 709	1.47	0. 180	0393	0. 061
44. 10	12. 25			2. 67	0. 736	1.50	0. 186	0. 95	0. 063
45. 00	12. 50			2. 72	0. 762	1.53	0. 193	0. 97	0. 065
45. 90	12. 75			2. 77	0. 790	1.56	0. 200	0. 99	0. 068
46. 80	13.00			2. 83	0. 817	1.59	0. 207	1.01	0. 070
47.70	13. 25			2. 88	0. 846	1. 62	0. 214	1. 03	0. 072

续表 A. 0. 1

流量	. 0	DN	180	DN	DN100		DN125		150
0.1		$d_{i}=0$	0765	$d_{\rm j} = 0.1020$		$d_i = 0.1280$		$d_i = 0.1510$	
(m³/h)	(l/s)	v	i	υ	i	υ	i	υ	i
32.04	8. 90	1.94	0. 417	1. 09	0. 106	0.69	0.036	0.50	0.016
32. 40	9.00	1.96	0. 426	1. 10	0. 108	0.70	0. 036	0.50	0.017
32. 76	9. 10	1. 98	0. 434	1. 11	0. 110	0.71	0. 037	0.51	0.017
33. 12	9. 20	2.00	0. 443	1. 13	0. 112	0.71	0. 038	0.51	0. 017
33. 48	9. 30	2. 02	0. 451	1.14	0. 114	0.72	0. 039	0.52	0. 018
33. 84	9. 40	2. 05	0. 460	1. 15	0.116	0.73	0. 039	0. 52	0. 018

续表 A.O.1

流量	• 0	DN	180	DN	100	DN	125	DN	150
<i>Dit.</i> <u>H</u>		$d_i = 0$	0765	$d_i = 0$. 1020	$d_i = 0$. 1280	$d_i = 0$. 1510
(m³/h)	(l/s)	υ	i	υ	i	υ	i	υ	i
34. 20	9. 50	2. 07	0.469	1.16	0. 119	0.74	0.040	0. 53	0.018
34. 56	9. 60	2. 09	0. 477	1. 17	0. 121	0. 75	0.041	0. 54	0. 019
34. 92	9. 70	2. 11	0. 486	1. 19	0. 123	0. 75	0.042	0. 54	0.019
35. 28	9. 80	2. 13	0. 495	1. 20	0. 125	0. 76	0.042	0. 55	0.019
35. 64	9. 90	2. 15	0.504	1. 21	0. 128	0.77	0.043	0. 55	0. 020
36.00	10.00	2. 18	0. 513	1. 22	0. 130	0. 78	0.044	0.56	0.020
36. 90	10. 25	2. 23	0. 536	1. 25	0. 136	0.80	0.046	0. 57	0. 021
37. 80	10.50	2. 28	0.560	1. 28	0. 142	0. 82	0. 048	0. 59	0. 022
38. 70	10. 75	2. 34	0. 583	1.32	0. 148	0. 84	0. 050	0.60	0. 023
39.60	11.00	2. 39	0. 608	1. 35	0. 154	0.85	0. 052	0. 61	0. 024
40.50	11. 25	2. 45	0. 632	1. 38	0. 160	0.87	0. 054	0.63	0. 025
41.40	11.50	2.50	0. 658	1.41	0. 167	0. 89	0.056	0.64	0.026
42.30	11.75	2.56	0. 683	1.44	0. 173	0.91	0. 059	0.66	0. 027
43. 20	12.00	2. 61	0. 709	1. 47	0. 180	0.93	0.061	0. 67	0. 028
44. 10	12. 25	2. 67	0. 736	1. 50	0. 186	0. 95	0.063	0. 68	0. 029
45. 00	12. 50	2. 72	0. 762	1. 53	0. 193	0. 97	0. 065	0. 70	0. 030
45. 90	12. 75	2. 77	0. 790	1.56	0. 200	0.99	0.068	0.71	0. 031
46.80	13. 00	2. 83	0.817	1. 59	0. 207	1.01	0. 070	0.73	0. 032
47.70	13. 25	2. 88	0.846	1. 62	0. 214	1.03	0. 072	0.74	0. 033
48. 60	13.50	2. 94	0. 874	1. 65	0. 221	1.05	0. 075	0. 75	0. 034

续表 A.O.1

3dr 4	• 0	DN	180	DN	100	DN	125	DN	150
<i>(</i> A B	t Q	$d_i = 0$. 0765	$d_i = 0$. 1020	$d_i = 0$. 1280	$d_i = 0$. 1510
(m³/h)	(l/s)	υ	i	ש	i	บ	i	υ	i
49.50	13.75	2. 99	0. 903	1. 68	0. 229	1.07	0. 077	0.77	0. 035
50.40	14.00	3. 05	0. 932	1. 71	0. 236	1.09	0.080	0. 78	0. 036
51.30	14. 25			1.74	0. 244	1.11	0. 082	0. 80	0. 037
52. 20	14.50			1.77	0. 251	1.13	0. 085	0. 81	0. 039
53. 10	14.75			1. 81	0. 259	1. 15	0. 088	0. 82	0.040
54.00	15.00			1.84	0. 267	1.17	0. 090	0. 84	0.041
55.80	15. 50			1.90	0. 283	1.20	0. 096	0. 87	0.043
57.60	16.00			1.96	0. 299	1. 24	0. 101	0. 89	0. 046
59.40	16.50			2. 02	0. 316	1. 28	0. 107	0. 92	0.049
61.20	17.00			2. 08	0. 333	1.32	0. 113	0. 95	0. 051
63.00	17. 50			2. 14	0. 351	1.36	0. 119	0. 98	0. 054
64.80	18.00			2. 20	0. 369	1.40	0. 125	1.01	0. 057
66.60	18.50			2. 26	0. 387	1.44	0. 131	1.03	0. 059
68.40	19.00			2. 33	0. 406	1.48	0. 137	1.06	0.062
70. 20	19.50			2. 39	0. 425	1.52	0. 144	1.09	0. 065
72.00	20.00			2. 45	0. 445	1.55	0. 150	1.12	0.068
73. 80	20.50			2. 51	0.464	1.59	0. 157	1.14	0. 071
75.60	21.00			2. 57	0. 485	1.63	0. 164	1. 17	0. 074
77.40	21.50			2. 63	0. 505	1.67	0. 171	1. 20	0. 078
79. 20	22. 00			2. 69	0. 526	1.71	0. 178	1. 23	0. 081

续表 A.O.1

		DN	180	. DN	100	DN	125	DN	150
流量	Q .	$d_i = 0$	0765	$d_i = 0$. 1020	$d_i = 0$. 1280	$d_i = 0$	1510
(m³/h)	(l/a)	υ	í	υ	i	υ	i	υ	i
81.00	22. 50			2. 75	0. 548	1.75	0. 185	1. 26	0. 084
82. 80	23. 00			2. 81	0. 570	1. 79	0. 193	1. 28	0.088
84. 60	23. 50			2. 88	0. 592	1. 83	0. 200	1. 31	0. 091
86.40	24. 00			2. 94	0. 614	1.87	0. 208	1. 34	0. 094
88. 20	24. 50			3.00	0. 637	1. 90	0. 216	1. 37	0. 098
90.00	25. 00			3. 06	0. 660	1.94	0. 223	1.40	0. 101
91.80	25. 50					1. 98	0. 231	1. 42	0. 105
93. 60	26. 00					2. 02	0. 239	1. 45	0. 109
95. 40	26. 50					2.06	0. 248	1. 48	0. 113
97. 20	27. 00					2. 10	0. 256	1.51	0.116
99.00	27. 50					2. 14	0. 265	1.54	0. 120
100. 80	28. 00					2. 18	0. 273	1.56	0. 124
102. 60	28. 50					2. 21	0. 282	1.59	0. 128
104. 40	29. 00					2. 25	0. 291	1. 62	0. 132
106. 20	29. 50					2. 29	0. 300	1. 65	0. 136
108.00	30.00					2. 33	0. 309	1.68	0. 140
109. 80	30. 50					2. 37	0. 318	1.70	0. 144
111.60	31.00					2. 41	0. 327	1.73	0. 149
113. 40	31.50					2. 45	0. 337	1.76	0. 153
115. 20	32. 00					2. 49	0. 346	1.79	0. 157
117.00	32. 50					2. 53	0. 356	1.81	0. 162

续表 A.O.1

Sale: Ja		DN	180	DN	100	DN	125	DN	150
流量		$d_i = 0$	0765	$d_i = 0$. 1020	$d_i = 0$	1280	$d_i = 0$	1510
(m³/h)	(l/s)	ע	i	υ	i	υ	i	υ	i
118.80	33. 00					2.56	0. 366	1.84	0. 166
120. 60	33. 50					2. 60	0. 375	1. 87	0. 171
122. 40	34.00					2. 64	0. 385	1.90	0. 175
124. 20	34.50					2. 68	0. 396	1. 93	0. 180
126.00	35.00					2. 72	0.406	1. 95	0. 184
127. 80	35.50					2. 76	0.416	1.98	0. 189
129. 60	36.00					2.80	0. 427	2. 01	0. 194
131.40	36. 50					2.84	0. 437	2. 04	0. 199
133. 20	37. 00					2. 88	0.448	2. 07	0. 203
135. 00	37. 50					2. 91	0. 459	2. 09	0. 208
136. 80	38. 00					2. 95	0. 469	2. 12	0. 213
138. 60	38. 50					2. 99	0. 481	2. 15	0. 218
140. 40	39.00					3. 03	0. 492	2. 18	0. 223
142. 20	39. 50					3. 07	0. 503	2. 21	0. 228
144.00	40.00					3.11	0. 514	2. 23	0. 234
145. 80	40. 50					3. 15	0. 526	2. 26	0. 239
147. 60	41.00					3. 19	. 0537	2. 29	0. 244
149. 40	41.50					3. 23	0. 549	2. 32	0. 249
151. 20	42. 00					3. 26	0. 561	2. 35	0. 255
153.00	42. 50							2. 37	0. 260
154. 80	43. 00							2.40	0. 266

注:单位i为KPa/m,d,为m,v为m/s。

A. 0.2 内涂塑钢管的沿程水头损失可按表 A. 0.2 确定。

表 A. 0.2 建筑给水用内涂塑钢管水力计算表

		DN	115	DN	120	DN	125	DN	132
流道	Q	$d_i = 0$	0148	$d_i = 0$. 0233	$d_i = 0$	0260	$d_i = 0$	0348
(m³/h)	(l/s)	ש	i	v	i	v	i	v	i
0. 306	0.085	0.49	0. 277						
0. 324	0.090	0.52	0. 307						
0. 342	0. 095	0. 55	0. 338						
0. 360	0.100	0.58	0. 370						
0. 396	0. 11	0.64	0. 438						
0. 432	0. 12	0.70	0. 511						
0. 468	0. 13	0.76	0. 589						
0. 504	0. 14	0. 81	0. 672						
0.540	0. 15	0.87	0. 759						
0. 576	0.16	0. 93	0. 852	0.49	0. 188				
0. 612	0. 17	0. 99	0. 948	0. 53	0. 210				
0.648	0. 18	1. 05	1.049	0.56	0. 232				
0. 684	0.19	1.10	1. 155	0. 59	0. 256				
0.72	0. 20	1.16	1. 265	0. 62	0. 280				
0.90	0. 25	1. 45	1. 879	0. 77	0. 416	0.47	0. 128		
1.08	0. 30	1.74	2. 597	0. 93	0. 575	0.57	0. 176		
1. 26	0. 35	2. 03	3. 414	1.08	0. 755	0.66	0. 232		
1.44	0.40	2. 33	4. 326	1. 24	0. 957	0. 75	0. 294		
1. 62	0. 45	2. 62	5. 332	1. 39	1. 180	0. 85	0. 362	0. 47	0. 090
1.80	0.50	2. 91	6. 428	1. 54	1. 422	0. 94	0. 436	0. 53	0. 108

续表 A.O.2

34.3		DN	115	DN	120	DN	125	DN	132
流量		$d_i = 0$. 0148	$d_i = 0$. 0203	$d_i = 0$	0260	$d_j = 0$	0348
(m³/h)	(1/s)	υ	i	υ	i	υ	i	υ	i
1. 98	0. 55	3. 20	7. 612	1. 70	1. 684	1.04	0.517	0.58	0. 128
2. 16	0. 60			1. 85	1. 965	1.13	0. 603	0.63	0. 150
2. 34	0. 65			2. 01	2. 265	1. 22	0.695	0.68	0. 173
2. 52	0. 70			2. 16	2. 583	1.32	0. 793	0.74	0. 197
2. 70	0. 75			2. 32	2. 919	1.41	0.896	0.79	0. 223
2. 88	0. 80			2. 47	3. 273	1.51	1.004	0.84	0. 250
3.06	0. 85			2. 63	3. 645	1.60	1. 118	0.89	0. 278
3. 24	0. 90			2. 78	4. 034	1.70	1. 238	0.95	0. 308
3. 42	0. 95			2. 94	4. 440	1. 79	1. 362	1.00	0. 339
3. 60	1.00			3. 09	4. 863	1.88	1. 492	1.05	0. 371
3. 78	1.05					1.98	1. 627	1. 10	0. 405
3. 96	1.10					2. 07	1.767	1.16	0. 439
4. 14	1. 15					2. 17	1. 912	1. 21	0. 475
4. 32	1. 20					2. 26	2.062	1.26	0.513
4.50	1. 25					2. 35	2. 217	1. 31	0.551
4. 68	1. 30					2. 45	2. 377	1. 37	0. 591
4. 86	1. 35					2. 54	2. 541	1. 42	0. 632
5. 04	1.40					2. 64	2. 711	1.47	0.674
5. 22	1. 45					2. 73	2. 885	1.52	0. 717
5. 40	1. 50					2. 83	3. 063	1.58	0. 762

续表 A.O.2

流量	• 0	DN	115	DN	120	DN	12 5	DN	38
JW. 38	ı Q	$d_i = 0.0148$		$d_i = 0.0203$		$d_i = 0.0260$		$d_i = 0.0348$	
(m³/h)	(1/s)	υ	í	υ	i	υ	i	v	i
5. 58	1. 55					2. 92	3. 247	1. 63	0. 807
5. 76	1. 60					3. 01	3. 435	1. 68	0.854
5. 94	1. 65							1. 73	0. 902
6. 12	1. 70							1. 79	0. 951
6. 30	1. 75							1.84	1.001
6. 48	1. 80							1. 89	1. 053
6. 66	1. 85							1. 95	1. 105
6. 84	1. 90							2. 00	1. 159

流量	٠	DN	132	DN	140	DN	150	DN	165
OK. III	L W	$d_i = 0$. 0348	$d_i = 0$. 0400	$d_i = 0$	0520	$d_i = 0$. 0670
(m³/h)	(1/s)	υi		υ	i	υ	i	υ	i
2. 16	0.60	0.63	0. 150	0.48	0. 077				
2. 34	0. 65	0. 68	0. 173	0. 52	0. 089				
2. 52	0. 70	0.74	0. 197	0.56	0. 101				
2. 70	0. 75	0.79	0. 223	0.60	0. 115				
2.88	0. 80	0.84	0. 250	0.64	0. 128				
3.06	0. 85	0.89	0. 278	0.68	0. 143				
3. 24	0. 90	0.95	0.308	0. 72	0. 158				
3. 42	0. 95	1.00	0. 339	0.76	0. 174				

续表 A.O.2

		DN	32	DN	140	DN	50	DN	65
流道	Q	$d_i = 0$	0348	$d_i = 0$	0400	$d_i = 0$	0520	$d_i = 0$.	0670
(m³/h)	(l/s)	υ	i	υ	i	v	i	v	i
3. 60	1.00	1.05	0. 371	0. 80	0. 191				
3. 78	1. 05	1.10	0. 405	0.84	0. 208	0.49	0. 059		
3. 96	1. 10	1.16	0.439	0.88	0. 226	0.52	0.065		
4.14	1. 15	1. 21	0. 475	0. 92	0. 245	0.54	0.070		
4. 32	1. 20	1.26	0. 513	0. 95	0. 264	0. 57	0. 075		
4.50	1. 25	1.31	0. 551	0. 99	0. 284	0. 59	0. 081		
4. 68	1. 30	1. 37	0. 591	1.03	0. 304	0.61	0. 087		
4.86	1. 35	1.42	0. 632	1. 07	0. 325	0.64	0. 093		
5.04	1.40	1.47	0. 674	1.11	0. 347	0.66	0.099		
5. 22	1. 45	1. 52	0. 717	1. 15	0. 369	0. 68	0. 105		
5.40	1.50	1.58	0. 762	1. 19	0. 392	0.71	0. 112		
5. 58	1. 55	1.63	0. 807	1. 23	0. 415	0. 73	0. 119		
5. 76	1.60	1. 68	0. 854	1. 27	0. 439	0.75	0. 126		
5. 94	1.65	1.73	0. 902	1. 31	0. 464	0.78	0. 133		
6. 12	1. 70	1.79	0. 951	1. 35	0. 489	0.80	0.140		
6. 30	1. 75	1. 84	1.001	1. 39	0. 515	0.82	0. 147	0.50	0. 044
6.48	1.80	1.89	1.053	1. 43	0. 541	0.85	0. 155	0. 51	0.046
6. 66	1. 85	1. 95	1. 105	1. 47	0. 568	0.87	0. 162	0.52	0.048
6. 84	1. 90	2.00	1. 159	1. 51	0. 596	0.89	0. 170	0.54	0. 051
7.02	1. 95	2. 05	1. 213	1. 55	0. 624	0. 92	0. 178	0.55	0. 053

续表 A.O.2

*		DN	132	DN	140	DN	150	DN	65
液量	Q	$d_i = 0$. 0348	$d_i = 0$	0400	$d_i = 0$	0520	$d_i = 0$	0670
(m³/h)	(1/s)	ע	i	υ	i	υ	i	υ	i
7. 20	2. 00	2. 10	1. 269	1. 59	0. 653	0. 94	0. 187	0. 57	0. 056
7.56	2. 10	2. 21	1. 384	1. 67	0. 712	0.99	0. 203	0.60	0. 061
7. 92	2. 20	2. 31	1. 503	1. 75	0. 773	1.04	0. 221	0. 62	0.066
8. 28	2. 30	2. 42	1. 626	1. 83	0. 836	1.08	0. 239	0. 65	0.071
8. 64	2. 40	2. 52	1. 753	1. 91	0. 902	1. 13	0. 258	0. 68	0. 077
9.00	2. 50	2. 63	1. 885	1. 99	0. 970	1. 18	0. 277	0.71	0. 083
9. 36	2. 60	2. 73	2. 021	2. 07	1. 040	1. 22	0. 297	0.74	0. 089
9. 72	2. 70	2.84	2. 161	2. 15	1. 112	1. 27	0. 318	0. 77	0. 095
10.08	2. 80	2. 94	2. 305	2. 23	1. 186	1. 32	0. 339	0. 79	0. 101
10. 44	2. 90	3. 05	2. 453	2. 31	1. 262	1. 37	0. 361	0. 82	0. 108
10. 80	3. 00			2. 39	1. 340	1.41	0. 383	0. 85	0. 114
11. 16	3. 10			2. 47	1. 420	1.46	0.406	0. 88	0. 121
11. 52	3. 20			2. 55	1. 502	1.51	0. 429	0. 91	0. 128
11. 88	3. 30			2. 63	1. 587	1.55	0. 453	0.94	0. 135
12. 24	3. 40			2. 71	1. 673	1.60	0. 478	0. 96	0. 143
12. 60	3. 50			2. 79	1. 761	1.65	0. 503	0. 99	0. 150
12. 96	3. 60			2. 86	1. 852	1. 70	0. 529	1.02	0. 158
13. 32	3. 70			2. 94	1. 944	1.74	0. 556	1.05	0. 166
13. 68	3. 80			3. 02	2. 038	1. 79	0. 582	1.08	0. 174
14.04	3. 90					1.84	0. 610	1.11	0. 182

续表 A.O.2

液量	• 0	DN	DN32		140	DN	150	DN65		
<i>(4.)</i>	. 4	$d_i = 0$. 0348	$d_i = 0$. 0400	$d_i = 0$. 0520	$d_i = 0$. 0670	
(m³/h)	(l/s)	υ	υi		i	υ	i	υ	i	
14. 40	4.00					1.88	0. 638	1.13	0. 190	
14. 76	4. 10					1.93	0. 666	1. 16	0. 199	

3 tr .		DN	150	DN	165	DN	180	DN	100
流量	· ·	$d_i = 0$	0520	$d_j = 0$. 0670	$d_i = 0$. 0795	$d_i = 0$	1050
(m³/h)	(1/s)	v	i	υ	i	υ	i	υ	i
9.00	2. 50	1. 18	0. 277	0.71	0. 083	0. 50	0. 037		
9. 36	2. 60	1. 22	0. 297	0. 74	0. 089	0. 52	0. 039		
9. 72	2. 70	1. 27	0. 318	0. 7 7	0. 095	0.54	0.042		
10.08	2. 80	1. 32	0. 339	0. 79	0. 101	0.56	0.045		
10. 44	2. 90	1. 37	0. 361	0. 82	0. 108	0.58	0.048		
10. 80	3. 00	1.41	0. 383	0. 85	0. 114	0.60	0. 050		
11.16	3. 10	1.46	0.406	0. 88	0. 121	0. 62	0. 053		
11.52	3. 20	1.51	0. 429	0. 91	0. 128	0.64	0.057		
11.88	3. 30	1.55	0. 453	0.94	0. 135	0.66	0.060		
12. 24	3. 40	1.60	0. 478	0. 96	0. 143	0. 68	0.063		
12. 60	3. 50	1.65	0. 503	0. 99	0. 150	0.71	0.066		
12. 96	3. 60	1.70	0. 529	1.02	0. 158	0. 73	0. 070		
13. 32	3. 70	1.74	0. 556	1.05	0. 166	0. 75	0. 073		
13. 68	3. 80	1.79	0. 582	1.08	0. 174	0. 77	0. 077		

续表 A.O.2

Mr. #		DN	50	DN	165	DN	80	DN	100
流道	· ·	$d_i = 0$	0520	$d_i = 0$	0670	$d_i = 0$.	0795	$d_j = 0$.	1050
(m³/h)	(l/s)	υ	i	υ	i	v	i	υ	i
14. 04	3. 90	1.84	0. 610	1.11	0. 182	0. 79	0.080		
14. 40	4.00	1. 88	0. 638	1. 13	0. 190	0. 81	0. 084		
14.76	4. 10	1. 93	0. 666	1. 16	0. 199	0.83	0. 088		
15. 12	4. 20	1. 98	0. 696	1. 19	0. 207	0. 85	0. 092	0.49	0. 024
15. 48	4. 30	2. 02	0. 725	1. 22	0. 216	0. 87	0.096	0. 50	0. 025
15. 84	4. 40	2. 07	0. 755	1. 25	0. 225	0. 89	0. 100	0. 51	0. 026
16. 20	4. 50	2. 12	0. 786	1. 28	0. 234	0. 91	0.104	0. 52	0. 027
16. 56	4. 60	2. 17	0. 817	1. 30	0. 244	0. 93	0. 108	0. 53	0. 029
16. 92	4.70	2. 21	0. 849	1. 33	0. 253	0. 95	0. 112	0.54	0. 030
17. 28	4. 80	2. 26	0. 882	1. 36	0. 263	0. 97	0. 116	0. 55	0. 031
17. 64	4. 90	2. 31	0. 914	1. 39	0. 273	0. 99	0. 120	0. 57	0. 032
18. 00	5. 00	2. 35	0. 948	1. 42	0. 283	1.01	0. 125	0.58	0. 033
18. 36	5. 10	2. 40	0. 982	1. 45	0. 293	1.03	0. 129	0. 59	0. 034
18. 72	5. 20	2. 45	1.016	1. 47	0. 303	1.05	0. 134	0.60	0. 035
19.08	5. 30	2. 50	1.051	1. 50	0. 313	1. 07	0. 138	0. 61	0. 037
19.44	5.40	2. 54	1.086	1. 53	0. 324	1. 09	0. 143	0. 62	0. 038
19.80	5. 50	2. 59	1. 122	0. 56	0. 335	1. 11	0. 148	0. 64	0. 039
20. 16	5. 60	2. 64	1. 159	1. 59	0. 346	1.13	0. 153	0. 65	0.040
20. 52	5. 70	2. 68	1. 196	1. 62	0. 357	1. 15	0. 158	0. 66	0.042
20. 88	5. 80	2. 73	1. 233	1. 65	0. 368	1. 17	0. 163	0. 67	0.043

续表 A.O.2

流量	• 0	DN	150	DN65		DN	180	DN100	
OL I	. ~	$d_{i}=0.0520$		$d_{\rm j} = 0.0670$		$d_{\rm j} = 0.0795$		$d_i = 0.1050$	
(m³/h)	(l/s)	υ	i	ט	i	υ	i	υ	i
21. 24	5 . 9 0	2. 78	1. 271	1. 67	0. 379	1. 19	0. 168	0. 68	0. 044
21.60	6. 00	2. 83	1. 310	1. 70	0. 391	1.21	0. 173	0.69	0.046
21. 96	6. 10	2. 87	1. 349	1. 73	0. 402	1. 23	0. 178	0. 70	0.047
22. 32	6. 20	2. 92	1. 388	1. 76	0. 414	1. 25	0. 183	0. 72	0.048
22. 68	6. 30	2. 97	1. 428	1. 79	0. 426	1. 27	0. 188	0.73	0. 050
23. 04	6. 40	3. 01	1.468	1. 82	0. 438	1. 29	0. 194	0.74	0. 051
23. 40	6. 50			1.84	0. 450	1.31	0. 199	0. 75	0. 053
23. 76	6 . 6 0			1. 87	0. 462	1.33	0. 204	0.76	0. 054
24. 12	6. 70			1. 90	0. 475	1. 35	0. 210	0. 77	0. 056
24. 48	6. 80			1. 93	0. 488	1. 37	0. 215	0. 79	0. 057
24. 84	6 . 9 0			1.96	0. 500	1.39	0. 221	0.80	0. 059
25. 20	7. 00			1. 99	0. 513	1.41	0. 227	0. 81	0.060
25. 56	7. 10			2. 01	0. 526	1. 43	0. 233	0. 82	0.062
25. 92	7. 20			2.04	0. 540	1.45	0. 238	0. 83	0.063
26. 28	7. 30			2. 07	0. 553	1.47	0. 244	0.84	0.065
26. 64	7.40			2. 10	0. 567	1.49	0. 250	0. 85	0.066

续表 A.O.2

32.4	t Q	DN	165	DN80		DN100		DN125	
OK I		$d_{j} = 0.0670$		$d_{\rm j} = 0.0795$		$d_{\rm j}$ =0.01050		$d_{j} = 0.1310$	
(m³/h)	(l/s)	υ	i	v	i	v	i	υ	i
24. 12	6. 70	1.90	0. 475	1. 35	0. 210	0.77	0.056	0.50	0. 019
24. 48	6. 80	1. 93	0. 488	1. 37	0. 215	0.79	0. 057	0.50	0. 020
24. 84	6. 90	1.96	0.500	1. 39	0. 221	0.80	0. 059	0. 51	0. 020
25. 20	7. 00	1. 99	0. 513	1. 41	0. 227	0.81	0. 060	0.52	0. 021
25. 56	7. 10	2. 01	0. 526	1. 43	0. 233	0.82	0.062	0.53	0. 021
25. 92	7. 20	2. 04	0. 540	1. 45	0. 238	0. 83	0.063	0. 53	0. 022
26. 68	7. 30	2. 07	0. 553	1. 47	0. 244	0.84	0. 065	0.54	0. 023
26. 64	7. 40	2. 10	0. 567	1.49	0. 250	0.85	0.066	0.55	0. 023
27. 00	7. 50	2. 13	0.580	1.51	0. 256	0. 87	0.068	0.56	0. 024
27. 36	7. 60	2. 16	0.594	1. 53	0. 262	0.88	0.070	0.56	0. 024
27. 72	7.70	2. 18	0.608	1.55	0. 269	0.89	0.071	0.57	0. 025
28. 08	7. 80	2. 21	0.622	1. 57	0. 275	0.90	0. 073	0.58	0. 025
28. 44	7. 90	2. 24	0.636	1. 59	0. 281	0. 91	0.074	0.59	0. 026
28. 80	8.00	2. 27	0.651	1. 61	0. 287	0.92	0.076	0.59	0. 026
29. 16	8. 10	2. 30	0.665	1.63	0. 294	0.94	0.078	0.60	0. 027
29. 52	8. 20	2. 33	0.680	1. 65	0. 300	0.95	0.080	0. 61	0. 028
29. 88	8. 30	2. 35	0. 694	1. 67	0. 307	0.96	0.081	0. 62	0.028
30. 24	8. 40	2. 38	0. 709	1. 69	0.313	0.97	0.083	0. 62	0. 029
30. 60	8. 50	2. 41	0. 724	1. 71	0. 320	0.98	0.085	0.63	0. 030
30. 96	8. 60	2. 44	0.740	1. 73	0. 327	0.99	0. 087	0.64	0. 030

续表 A.O.2

anter Ja		DN	165	DN	180	DN	100	DN125	
液量	Q	$d_{\rm j} = 0.0670$		$d_{i} = 0.0795$		$d_{\rm j}$ =0.01050		$d_i = 0.1310$	
(m³/h)	(l/s)	υ	i	υ	i	ש	i	υ	i
31. 32	8. 70	2. 47	0. 755	1.75	0. 334	1.00	0.088	0. 65	0. 031
31. 68	8. 80	2. 50	0. 770	1.77	0. 340	1.02	0. 090	0. 65	0. 031
32. 04	8. 90	2. 52	0. 786	1. 79	0. 347	1.03	0.092	0.66	0. 032
32. 40	9. 00	2. 55	0. 802	1. 81	0. 354	1.04	0.094	0. 67	0. 033
32. 76	9. 10	2. 58	0. 818	1. 83	0. 361	1.05	0. 096	0.68	0. 033
33. 12	9. 20	2. 61	0. 834	1. 85	0. 368	1.06	0. 098	0. 68	0. 034
33. 48	9. 30	2. 64	0. 850	1. 87	0. 376	1.07	0. 100	0. 69	0. 035
33. 84	9. 40	2. 67	0. 866	1. 89	0. 383	1.09	0. 101	0. 70	0. 035
34. 20	9. 50	2. 69	0. 882	1. 91	0. 390	1.10	0. 103	0. 70	0. 036
34.56	9. 60	2. 72	0. 899	1. 93	0. 397	1.11	0. 105	0. 71	0. 037
34. 92	9. 70	2. 75	0. 916	1. 95	1. 405	1.12	0. 107	0. 72	0. 037
35. 28	9. 80	2. 78	0. 933	1. 97	0. 412	1. 13	0. 109	0.73	0. 038
35. 64	9. 90	2. 81	0. 949	1. 99	0. 420	1.14	0. 111	0.73	0. 039
36. 00	10.00	2.84	0. 967	2. 01	0. 427	1. 15	0. 113	0.74	0. 039
36. 90	10. 25	2. 91	1.010	2. 06	0. 446	1. 18	0. 118	0.76	0.041
37. 80	10. 50	2. 98	1.054	2. 12	0. 466	1. 21	0. 123	0. 78	0.043
38. 70	10. 75	3. 05	1.099	2. 17	0. 486	1. 24	0. 129	0.80	0.045
39. 60	11.00			2. 22	0. 506	1. 27	0.134	0. 82	0.047
40. 50	11. 25			2. 27	0. 526	1.30	0. 139	0. 83	0.049
41.40	11.50			2. 32	0. 547	1. 33	0. 145	0. 85	0. 050

续表 A.O.2

	流量 Q		DN65		DN80		DN100		125
~ .		$d_i = 0$. 0670	$d_i = 0$. 0795	$d_i = 0$	01050	$d_i = 0$. 1310
(m³/h)	(l/s)	ש	i	υ	i	υ	i	υ	i
42. 30	11. 75			2. 37	0. 569	1. 36	0. 151	0. 87	0. 052
43. 20	12.00			2. 42	0. 590	1.39	0. 156	0. 89	0. 054
44. 10	12. 25			2. 47	0. 612	1.41	0. 162	0. 91	0. 056
45. 00	12. 50			2. 52	0. 635	1.44	0. 168	0. 93	0. 058
45. 90	12. 75			2. 57	0. 657	1.47	0. 174	0. 95	0. 061
46. 80	13. 00			2. 62	0. 680	1.50	0. 180	0. 96	0. 063
47.70	13. 25			2. 67	0. 704	1. 53	0. 186	0. 98	0. 065
48. 60	13. 50			2. 72	0. 727	1.56	0. 193	1.00	0. 067
49. 50	13. 75			2. 77	0. 751	1. 59	0. 199	1. 02	0. 069
50. 40	14. 00			2. 82	0. 776	1.62	0. 206	1.04	0. 071

液量 Q		DN80		DN	DN100		DN125		150
~=	. •	$d_j = 0$. 0795	$d_j = 0$. 1050	$d_{i} = 0$. 1310	$d_1 = 0.1550$	
(m³/h)	(l/s)	v	i	υ	i	υ	i	ซ	i
33. 84	9. 40	1.89	0. 383	1. 09	0. 101	0. 70	0. 035	0. 50	0. 016
34. 20	9. 50	1.91	0. 390	1. 10	0. 103	0. 70	0. 036	0. 50	0.016
34. 56	9. 60	1.93	0. 397	1. 11	0. 105	0. 71	0. 037	0. 51	0.016
34. 92	9. 70	1.95	0. 405	1. 12	0. 107	0. 72	0. 037	0. 51	0. 017
35. 28	9. 80	1. 97	0. 412	1. 13	0. 109	0. 73	0. 038	0. 52	0. 017
35. 64	9. 90	1. 99	0. 420	1. 14	0. 111	0.73	0. 039	0. 52	0. 017

续表 A.O.2

34.4		DN	180	DN	100	DN	125	DN150	
液量	Q	$d_{i}=0.0795$		$d_i = 0.1050$		$d_{\rm j}$ =0.1310		$d_1 = 0.1550$	
(m³/h)	(1/s)	U	i	v	i	υ	i	v	i
36.00	10, 00	2. 01	0. 427	1. 15	0. 113	0.74	0.039	0.53	0.018
36. 90	10. 25	2.06	0.446	1. 18	0. 118	0.76	0.041	0.54	0. 018
37. 80	10. 50	2. 12	0.466	1. 21	0. 123	0.78	0.043	0. 56	0. 019
38. 70	10.75	2. 17	0. 486	1. 24	0. 129	0.80	0.045	0. 57	0. 020
39. 60	11.00	2. 22	0. 506	1. 27	0. 134	0.82	0.047	0. 58	0. 021
40. 50	11. 25	2. 27	0. 526	1. 30	0. 139	0.83	0.049	0.60	0. 022
41.40	11.50	2. 32	0.547	1. 33	0. 145	0.85	0.050	0. 61	0. 023
42. 30	11.75	2. 37	0. 569	1. 36	0. 151	0. 87	0.052	0, 62	0. 023
43. 20	12.00	2. 42	0. 590	1. 39	0. 156	0. 89	0.054	0. 64	0.024
44. 10	12. 25	2. 47	0. 612	1.41	0. 162	0. 91	0.056	0. 65	0. 025
45.00	12.50	2. 52	0. 635	1.44	0.168	0. 93	0.058	0. 66	0. 026
45.90	12. 75	2. 57	0. 657	1. 47	0. 174	0. 95	0.061	0. 68	0. 027
46. 80	13.00	2. 62	0. 680	1.50	0. 180	0.96	0.063	0.69	0. 028
47.70	13. 25	2. 67	0.704	1. 53	0. 186	0. 98	0.065	0.70	0. 029
48. 60	13. 50	2. 72	0. 727	1. 56	0. 193	1.00	0. 067	0. 72	0. 030
49.50	13. 75	2. 77	0. 751	1.59	0.199	1.02	0.069	0.73	0. 031
50.40	14.00	2. 82	0.776	1. 62	0. 206	1.04	0.071	0.74	0. 032
51.30	14. 25	2. 87	0.801	1. 65	0. 212	1.06	0.074	0.76	0. 033
52. 20	14. 50	2. 92	0. 826	1. 67	0. 219	1.08	0.076	0. 77	0. 034
53. 10	14. 75	2. 97	0. 851	1. 70	0. 226	1.09	0.078	0. 78	0. 035

续表 A. G. 2

		DN	180	DN	100	DN	125	DN150	
7K. 1	t Q	$d_i = 0.0795$		$d_i = 0.1050$		$d_i = 0.1310$		$d_i = 0.1550$	
(m³/h)	(1/s)	ָּט טָ	i	. ช	i	ע	i	υ	i
54. 00	15. 00	3. 02	0. 877	1. 73	0. 232	1.11	0. 79	0. 036	
55. 80	15. 50			1. 79	0. 246	1. 15	0. 086	0. 82	0. 038
57. 60	16.00			1. 85	0. 261	1. 19	0.091	0. 85	0.041
59. 40	16. 50			1.91	0. 275	1. 22	0. 096	0. 87	0.043
61. 20	17. 00			1. 96	0. 290	1. 26	0. 101	0. 90	0.045
63. 00	17. 50			2. 02	0. 305	1.30	0.106	0. 93	0.048
64. 80	18.00			2. 08	0. 321	1.34	0. 112	0. 95	0. 050
66. 60	18. 50			2. 14	0. 337	1.37	0. 117	0. 98	0. 053
68. 40	19. 00			2. 19	0. 353	1.41	0. 123	1. 01	0. 055
70. 20	19. 50			2. 25	0. 370	1.45	0. 129	1.03	0. 058
72. 00	20.00			2. 31	0. 387	1.48	0. 135	1.06	0 . 06 0
73. 80	20. 50			2. 37	0. 404	1. 52	0. 141	1. 09	0.063
75. 60	21. 00			2. 43	0. 422	1.56	0. 147	1. 11	0.066
77.40	21.50			2. 48	0. 440	1.60	0. 153	1. 14	0. 069
79. 20	22.00			2. 54	0. 458	1. 63	0. 159	1. 17	0. 071
81. 00	22. 50			2. 60	0. 477	1. 67	0. 166	1. 19	0. 074
82. 80	23. 00			2. 66	0. 496	1.71	0. 172	1. 22	0. 077
84. 60	23. 50			2. 71	0. 515	1.74	0. 179	1. 25	0. 080
86. 40	24.00			2. 77	0. 535	1. 78	0. 186	1. 27	0. 083
88. 20	24. 50			2. 83	0. 555	1. 82	0. 193	1. 30	0. 086

续表 A.O.2

技士		DN	180	DN	DN100		DN125		150
04.1		$d_{j} = 0.0795$		$d_i = 0.1050$		$d_{i} = 0.1310$		$d_{i}=0.1550$	
(m³/h)	(1/s)	υ	i	v	i	v	i	υ	i
90.00	25. 00			2. 89	0. 575	1.85	0. 200	1. 32	0. 090
91.80	25. 50			2. 94	0. 596	1.89	0. 207	1. 35	0. 093
93. 60	26. 00			3. 00	0. 616	1.93	0. 214	1. 38	0. 096
95. 40	26. 50			3. 06	0. 638	1. 97	0. 222	1.40	0. 099
97. 20	27. 00					2.00	0. 229	1. 43	0. 103
99. 00	27. 50					2.04	0. 237	1.46	0. 106
100. 80	28.00					2.08	0. 245	1. 48	0. 110
102. 60	28. 50					2. 11	0. 252	1.51	0. 113
104. 40	29. 00					2. 15	0. 260	1.54	0. 117
106. 20	29.50					2. 19	0. 268	1.56	0. 120
108. 00	30.00					2. 23	0. 276	1. 59	0. 124
109. 80	30. 50					2. 26	0. 285	1. 62	0. 127
111.60	31.00					2.30	0. 293	1. 64	0. 131
113. 40	31.50					2. 34	0. 301	1. 67	0. 135
115. 20	32.00					2. 37	0. 310	1.70	0. 139
117. 00	32. 50					2. 41	0. 319	1. 72	0. 143
118. 80	33.00					2. 45	0. 327	1. 75	0. 147
120.60	33. 50					2. 49	0. 336	1.78	0. 151
122. 40	34.00					2. 52	0. 345	1.80	0. 155
124. 20	34. 50					2. 56	0. 354	1. 83	0. 159

续表 A.O.2

		DN	180	DN	DN100		125	DN150	
a.	ł Q	$d_i = 0.0795$		$d_i = 0.1050$		$d_{j} = 0.1310$		$d_{\rm j} = 0.1550$	
(m³/h)	(1/s)	υ	i	υ	i	บ	i	υ	i
126. 00	35. 00					2. 60	0. 363	1. 85	0. 163
127. 80	35. 50					2. 63	0. 373	1. 88	0. 167
129. 60	36.00					2. 67	0. 382	1.91	0. 171
131. 40	36. 50					2.71	0. 391	1. 93	0. 175
133. 20	37. 00					2. 75	0. 401	1.96	0. 180
135. 00	37. 50					2. 78	0. 411	1. 99	0. 184
136. 80	38. 00					2. 82	0. 420	2. 01	0. 188
138. 60	38. 50					2. 86	0. 430	2. 04	0. 193
140. 40	39. 00					2. 89	0. 440	2. 07	0. 197
142. 20	39. 50					2. 93	0. 450	2. 09	0. 202
144.00	40.00					2. 97	0.460	2. 12	0. 206
162. 00	45.00					3. 34	0. 567	2. 38	0. 254
180.00	50.00							2. 65	0. 306
198. 00	55. 00							2. 91	0. 363
216.00	60.00							3. 18	0. 423

注:单位i为KPa/m,di为m,v为m/s。